[1] Images of derivations of polynomial algebras with divergence zero, J. Algebra,492(2017) 414-418. [2] Monomial preserving derivations and Mathieu-Zhao subspaces,J. Pure Appl. Algebra, 222(10) (2018) 3219–3223. [3] A class of retracts of polynomial algebras, J. Pure Appl. Algebra, 222(2) (2018) 382–386. [4] The factorial conjecture and images of locally nilpotent derivations,Bull. Aust. Math. Soc., 101(1)(2020), 71-79. [5] Quadratic tame generators problem of rank three, Linear Algebra Appl. 587(2020)1-22. [6] On the generalized Jacobian Conjecture, Czech. Math. J., 69 (144) (2019), 1061–1068. [7] Classification of cubic homogeneous polynomial maps with Jacobian matrices of rank two, Bull. Aust. Math. Soc., 98(1)(2018) 89-101. [8] Images of higher-order differential operators of polynomial algebras, Bull. Aust. Math. Soc., 96(2)(2017),205-211. [9] Automorphisms of the endomorphism semigroup of a free algebra, Internat J. Algebra Comput., 25(08) (2015), 1223-1238. [10] Classification of quadratic homogeneous automorphisms in dimension five, Comm. Algebra, 42(7)(2014), 2821-2840. [11] On the Strong Nilpotence Problem, Algebra Colloq., 21 (1)(2014), 117-128. [12] On additive-nilpotency of Jacobian matrices of polynomial maps, Linear Algebra Appl., 439 (12)(2013), 3746-3751. [13] Endomorphisms of polynomial algebra with small co-invariants, J. Pure Appl. Algebra, 216(12) (2012), 2709–2713. [14] Multidegrees of tame automorphisms in dimension three, Publ. Res. Inst. Math. Sci., 48(1) (2012), 129-137. [15] Polynomial maps with invertible sums of Jacobian matrices and directional derivatives, Indag. Math.,23 (2012) 256-268. [16] On quadratic homogeneous quasi-translations, J. Pure Appl. Algebra,214 (11) (2010), 1962-1972. [17] On non-singular multilinear maps, Linear Multilinear Algebra, 58 (3) (2010), 297-303. [18] Quadratic linear Keller maps of nilpotency index three, Linear Algebra Appl., 429 (1) (2008), 12-17. [19] The linear dependence problem for power linear maps. Linear Algebra Appl., 426(2-3) (2007), 706-715. [20] On the range of a Hadamard power of a positive semidefinite matrix, Linear Algebra Appl., 416(2-3) (2006),868-871. |