当前位置: 首 页 - 团队队伍 - 副教授 - 正文

翟起龙

发表于: 2021-04-23   点击: 


基本情况

姓名:翟起龙

性别:男

职称:副教授

所在系别:计算数学

是否博导:是

最高学历:博士研究生

最高学位:博士

Email:zhaiql@jlu.edu.cn


详细情况

所在学科专业

计算数学

研究方向

偏微分方程数值解

讲授课程

数学分析习题、数值分析实习

教育经历

2013.9-2018.6澳门永利官网总站入口老网址,博士

2009.9-2013.6澳门永利官网总站入口老网址,本科

工作经历

2020.7-至今 澳门永利官网总站入口老网址,副教授

2018.7-2020.6北京大学数学科学学院,博士后

科研项目

2020-2022非线性特征值问题的高精度有限元方法,国家自然科学基金青年基金项目,项目负责人

2019-2020电子结构计算的非标准有限元方法,中国博士后科学基金特别资助,项目负责人

2018-2020偏微分方程特征值问题的高精度数值算法,中国博士后科学基金面上项目一等资助,项目负责人

学术论文

[1] Zhang, Ran; Zhai, Qilong, A weak Galerkin finite element scheme for the biharmonic equations by using polynomials of reduced order. J. Sci. Comput., 64 (2015), no. 2, 559-585.

[2] Zhai, Qilong; Zhang, Ran; Wang, XiaoShen, A hybridized weak Galerkin finite element scheme for the Stokes equations. Sci. China Math., 58 (2015), no. 11, 2455-2472.

[3] Wang, Ruishu; Wang, Xiaoshen; Zhai, Qilong; Zhang, Ran, A weak Galerkin finite element scheme for solving the stationary Stokes equations. J. Comput. Appl. Math., 302 (2016), 171-185.

[4] Zhai, Qilong; Zhang, Ran; Mu, Lin, A new weak Galerkin finite element scheme for the Brinkman model. Commun. Comput. Phys., 19 (2016), no. 5, 1409-1434.

[5] Zhang, Hongqin; Zou, Yongkui; Xu, Yingxiang;Zhai, Qilong; Yue, Hua, Weak Galerkin finite element method for second order parabolic equations. Int. J. Numer. Anal. Model., 13 (2016), no. 4, 525-544.

[6] Wang, Xiuli; Zhai, Qilong; Zhang, Ran, The weak Galerkin method for solving the incompressible Brinkman flow. J. Comput. Appl. Math., 307 (2016), 13-24.

[7] Zhai, Qilong; Ye, Xiu; Wang, Ruishu; Zhang, Ran, A weak Galerkin finite element scheme with boundary continuity for second-order elliptic problems, Comput. Math. Appl., 74(2017), no. 10, 2243-2252.

[8] Tian, Tian; Zhai, Qilong; Zhang, Ran, A new modified weak Galerkin finite element scheme for solving the stationary Stokes equations, J. Comput. Appl. Math., 329(2018), 268-279.

[9] Wang, Junping; Ye, Xiu; Zhai, Qilong; Zhang, Ran; Discrete maximum principle for the P1-P0 weak Galerkin finite element approximations. J. Comput. Phys. , 362(2018), 114-130.

[10] Wang, Junping; Wang, Ruishu; Zhai, Qilong; Zhang, Ran, A Systematic Study on Weak Galerkin Finite Element Methods for Second Order Elliptic Problems, J. Sci. Comput. , 74 (2018), no. 3, 1369-1396.

[11] Wang, Xiuli; Zhai, Qilong; Wang, Ruishu; Jari, Rabeea An absolutely stable weak Galerkin finite element method for the Darcy-Stokes problem. Appl. Math. Comput. , 331 (2018), 20-32.

[12] Zhai, Qilong; Zhang, Ran; Malluwawadu, Nolisa; Hussain, Saqib; The weak Galerkin method for linear hyperbolic equation. Commun. Comput. Phys., 24 (2018), no. 1, 152-166.

[13] Wang, Ruishu; Wang, Xiaoshen; Zhai, Qilong; Zhang, Kai; A weak Galerkin mixed finite element method for the Helmholtz equation with large wave numbers. Numer. Methods Partial Differential Equations. , 34 (2018), no. 3, 1009-1032.

[14] Wang, Xiuli; Zhai, Qilong; Wang, Xiaoshen A class of weak Galerkin finite element methods for the incompressible fluid model. Adv. Appl. Math. Mech. , 11 (2019), no. 2, 360-380.

[15] Wang, Zhenhua; Zhai, Qilong; Chen, Wei; Wang, Xiaoliang; Lu, Yuyuan; An, lijia; Mechanism of nonmonotonic increase in polymer size: comparison between linear and ring chains at high shear rates. Macromolecules. , (52) 2019, no. 21, 8144-8154.

[16] Zhai, Qilong; Xie, Hehu; Zhang, Ran; Zhang, Zhimin; The weak Galerkin method for elliptic eigenvalue problems. Commun. Comput. Phys., 26 (2019), no. 1, 160-191.

[17] Zhai, Qilong; Zhang, Ran Lower and upper bounds of Laplacian eigenvalue problem by weak Galerkin method on triangular meshes. Discrete Contin. Dyn. Syst. Ser. B., 24 (2019), no. 1, 403-413.

[18] Peng, Hui; Wang, Xiuli; Zhai, Qilong; Zhang, Ran A weak Galerkin finite element method for the elliptic variational inequality. Numer. Math. Theory Methods Appl., 12 (2019), no. 3, 923-941.

[19] Wang, Junping; Zhai, Qilong; Zhang, Ran; Zhang, Shangyou; A weak Galerkin finite element scheme for the Cahn-Hilliard equation. Math. Comp. , 88 (2019), no. 315, 45-71.

[20] Zhai, Qilong; Xie, Hehu; Zhang, Ran; Zhang, Zhimin; Acceleration of Weak Galerkin Methods for the Laplacian Eigenvalue Problem. J. Sci. Comput., 79 (2019), no. 2, 914-934.

[21] Zhang, Qianru; Kuang, Haopeng; Wang, Xiuli; Zhai, Qilong; A hybridized weak Galerkin finite element method for incompressible Stokes equations. Numer. Math. Theory Methods Appl., 12 (2019), no. 4, 1012-1038.

[22] Wang, Xiuli; Zou, Yongkui; Zhai, Qilong; An effective implementation for Stokes equation by the weak Galerkin finite element method. J. Comput. Appl. Math., 370 (2020), 112586, 8 pp.

[23] Wang, Xiuli; Zhai, Qilong; Zhang, Ran; Zhang, Shangyou; The weak Galerkin finite element method for solving the time-dependent integro-differential equations. Adv. Appl. Math. Mech., 12 (2020), no. 1, 164-188.

[24] Zhai, Qilong; Tian, Tian; Zhang, Ran; Zhang, Shangyou; A symmetric weak Galerkin method for solving non-divergence form elliptic equations. J. Comput. Appl. Math., 372 (2020), 112693, 10 pp.

[25] Peng, Hui; Zhai, Qilong; Zhang, Ran; Zhang, Shangyou; Weak Galerkin and continuous Galerkin coupled finite element methods for the Stokes-Darcy interface problem. Commun. Comput. Phys., 28 (2020), no. 3, 1147-1175.

[26] Zhai, Qilong; Hu, Xiaozhe; Zhang, Ran; The shifted-inverse power weak Galerkin method for eigenvalue problems. J. Comput. Math., 38 (2020), no. 4, 606-605.

[27] Zhai, Qilong; Tian, Tian; Zhang, Ran; Zhang, Shangyou A symmetric weak Galerkin method for solving non-divergence form elliptic equations. J. Comput. Appl. Math., 372 (2020), 112693, 10 pp.

[28] Wang, Xiuli; Zhai, Qilong; Zhang, Ran; Zhang, Shangyou The weak Galerkin finite element method for solving the time-dependent integro-differential equations. Adv. Appl. Math. Mech., 12 (2020), no. 1, 164-188.

[29] Carstensen, Carsten; Zhai, Qilong; Zhang, Ran A skeletal finite element method can compute lower eigenvalue bounds. SIAM J. Numer. Anal., 58 (2020), no. 1, 109-124.

[30] Wang, Xiuli; Liu, Yuanyuan; Zhai, Qilong; The weak Galerkin finite element method for solving the time-dependent Stokes flow. Int. J. Numer. Anal. Model., 17 (2020), no. 5, 732-745.

[31] Li, Hong; Zhai, Qilong; Chen, Jeff Z. Y.; Neural-network-based multistate solver for a static Schrödinger equation. Phys. Rev. A., 103 (2021), 032405.

着作教材


获奖情况

2019东亚工业与应用数学学会员工论文奖一等奖

2020yl23411永利官网登录优秀青年教师培养计划

2020天元优秀青年学者奖励计划

社会兼职


座右铭


上一篇: 朱本喜

下一篇: 王秀丽