学术论文: |
【1】Wang, Ruishu; Wang, Xiaoshen; Zhai, Qilong; Zhang, Ran*. A weak Galerkin finite element scheme for solving the stationary Stokes equations. J. Comput. Appl. Math. 302 (2016), 171–185. 【2】 Wang, Chunmei; Wang, Junping*; Wang, Ruishu; Zhang, Ran. A locking-free weak Galerkin finite element method for elasticity problems in the primal formulation. J. Comput. Appl. Math. 307 (2016), 346–366. 【3】 Zhai, Qilong; Ye, Xiu; Wang, Ruishu; Zhang, Ran. A weak Galerkin finite element scheme with boundary continuity for second-order elliptic problems. Comput. Math. Appl. 74 (2017), no. 10, 2243–2252. 【4】 Wang, Ruishu; Zhang, Ran; Zhang, Xu*; Zhang, Zhimin. Supercloseness analysis and polynomial preserving recovery for a class of weak Galerkin method. Numer. Methods Partial Differential Equations 34 (2018), no. 1, 317–335. 【5】 Wang, Junping; Wang, Ruishu; Zhai, Qilong; Zhang, Ran*. A systematic study on weak Galerkin finite wlement methods for second order elliptic problems. J. Sci. Comput. 74 (2018), no. 3, 1369–1396. 【6】 Wang, Xiuli; Zhai, Qilong; Wang, Ruishu; Jari, Rabeea. An absolutely stable weak Galerkin finite element method for the Darcy-Stokes problem. Appl. Math. Comput. 331 (2018), 20–32. 【7】 Wang, Ruishu; Wang, Xiaoshen; Zhai, Qilong*; Zhang, Kai. A weak Galerkin mixed finite element method for the Helmholtz equation with large wave numbers. Numer. Methods Partial Differential Equations 34 (2018), no. 3, 1009–1032. 【8】 Wang, Ruishu; Zhang, Ran*. A weak Galerkin finite element method for the linear elasticity problem in mixed form. J. Comput. Math. 36 (2018), no. 4, 469–491. 【9】 Wang,Ruishu; Wang,xiaoshen; Zhang,Ran*. A Modified Weak Galerkin Finite Element Method for the Poroelasticity Problems. Numer. Math. Theory Methods Appl. 11 (2018), no. 3, 518–539. 【10】 Wang, Ruishu; Wang, Xiaoshen; Zhang, Kai*; Zhou, Qian. A hybridized weak Galerkin finite element method for the linear elasticity problem in mixed form. Front. Math. China 13 (2018), no. 5, 1121–1140. 【11】 Wang, Ruishu; Mu, Lin*; Ye, Xiu. A locking free Reissner-Mindlin element with weak Galerkin rotations. Discrete Contin. Dyn. Syst. Ser. B 24 (2019), no. 1, 351–361. 【12】 Wang, Ruishu; Zhang, Ran; Wang, Xiuli; Jia, Jiwei*. Polynomial preserving recovery for a class of weak Galerkin finite element methods. J. Comput. Appl. Math. 362 (2019), 528–539. 【13】 Harper, Graham; Wang, Ruishu; Liu, Jiangguo*; Tavener, Simon; Zhang, Ran. A locking-free solver for linear elasticity on quadrilateral and hexahedral meshes based on enrichment of Lagrangian elements. Comput. Math. Appl. 80 (2020), no. 6, 1578–1595. 【14】 Feng, Yue; Liu, Yujie; Wang, Ruishu*; Zhang, Shangyou. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electron. Res. Arch. 29 (2021), no. 3, 2375–2389. 【15】 Wang, Ruishu; Wang, Zhuoran; Liu, Jiangguo; Tavener, Simon; Zhang, Ran. Locking-free CG-type finite element solvers for linear elasticity on simplicial meshes. Int. J. Numer. Anal. Model. 18 (2021), no. 5, 690–711. 【16】 Feng, Yue; Liu, Yujie*; Wang, Ruishu; Zhang, Shangyou. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electron. Res. Arch. 29 (2022) , no. 3, 2375-2389.
|