当前位置: 首 页 - 科学研究 - 学术报告 - 正文

澳门永利官网总站入口老网址、所2021年系列学术活动(第25场):Rajan Mehta 教授 Smith College

发表于: 2021-04-27   点击: 

报告题目:Courant cohomology and Cartan calculus

报 告 人:Rajan Mehta教授,美国史密斯学院数学与统计系

报告时间:2021年4月30日  9:00-10:00

报告地点:Join Zoom Meeting

https://smith.zoom.us/j/92332403996

校内联系人:生云鹤 shengyh@jlu.edu.cn

报告摘要:It is known that Courant algebroids are in correspondence with degree 2 symplectic dg-manifolds. The standard cochain complex of a Courant algebroid is, by definition, the complex consisting of functions on the corresponding dg-manifold. However, this definition has been difficult to work with directly, due to a lack of explicit coordinate-free formulas relating the Courant data (bracket, anchor, and pairing) to the standard complex. In this talk, I will give a description of the standard complex in terms of the Courant data. In this description, the differential satisfies a familiar-looking Cartan formula, which allows many classical differential-geometric constructions to transfer verbatim to the study of Courant algebroids. As an application, I will explain how secondary characteristic classes can be constructed in a way that formally resembles the classical Chern-Simons construction. This is joint work with Miquel Cueca.

报告人简介:

Rajan Mehta,美国史密斯学院数学与统计系教授,从事微分几何与数学物理的研究,在Adv. Math., Lett. Math. Phys.J. Symplectic Geom.等杂志发表多篇高水平论文。