报告题目:随机微分方程数值方法的遍历性系列讲座(二)
报告人:甘四清 教授 中南大学数学与统计学院
报告时间:2021年7月18日 10:00-11:00
报告地点:腾讯会议 会议 ID:158 679 121 会议密码:0718
校内联系人:柴世民 chaism@jlu.edu.cn
报告摘要:We briefly introduce the concepts closely related to invariant measure and ergodicity for stochastic processes, as well as several sufficient conditions for the existence and uniqueness of invariant measures, which provide fundamental tools of studying the ergodicity of stochastic differential equations and their numerical approximations. We discrete the ergodic semilinear stochastic partial differential equations in space dimension d≤3with additive noise, spatially by a spectral Galerkin method and temporally by an exponential Euler scheme. It is shown that both the spatial semi-discretization and the spatio-temporal full discretization are ergodic. Further, convergence orders of the numerical invariant measures, depending on the regularity of noise, are recovered based on an easy time-independent weak error analysis without relying on Malliavin calculus. Numerical results are finally reported to confirm these theoretical findings.
报告人简介:甘四清,博士,中南大学数学与统计学院教授,博士生导师,2001年毕业于中国科学院数学研究所,获理学博士学位,2001-2003年在清华大学计算机科学与技术系高性能计算研究所从事博士后研究工作。曾访问美国、新加坡、香港、中国科学院科研院所。主要研究方向为确定性微分方程和随机微分方程数值解法。主持国家自然科学基金面上项目4项, 参加国家自然科学基金重大研究计划集成项目1项,参加国家自然科学基金项目多项。在《SIAM Journal on Scientific Computing》、《Journal of Scientific Computing》、《BIT Numerical Analysis》、《Applied Numerical Mathematics》、《Journal of Mathematics Analysis and Applications》、《中国科学》等国内外学术刊物上发表论文80余篇。