报告题目:Riemannian metrics with prescribed volume and finite parts of Dirichlet spectrum
报 告 人:王作勤 教授
所在单位:中国科学技术大学
报告时间:2022年11月21日 星期一 上午10:30-11:30
报告地点:腾讯会议ID: 533 341 281
校内联系人:任长宇 rency@jlu.edu.cn
报告摘要:In 1980s Colin de Verdiere proved that on any closed manifold of dimension at least 3, one can construct a smooth metric with arbitrarily prescribed finite parts of eigenvalues. Later Lohkamp showed that one can further prescribe the volume. In this talk, I will explain how to extend their results to Dirichlet eigenvalues on manifolds with boundary. This is based on an ongoing joint work with He Xiang.
报告人简介: 王作勤,中国科学技术大学数学科学学院教授,博士生导师,曾入选国家高层次青年人才计划。主要研究领域是微分几何与半经典微局部分析,特别是欧氏空间以及黎曼流形上Laplace型算子的谱分布与背景空间的几何/分析/动力系统性质之间的关系,工作发表在GAFA.,JDG.,JFA, CVPDE, Indag. Math, Inverse Probl.等国际高水平数学期刊上。