题目:Persistence approximation property for maximal Roe algebras.
报告人:汪镇 莆田学院
报告时间:2019年1月5日下午02:00-03:00
报告地点:数学楼633
摘要:Persistence approximation property was introduced by Herv’e Oyono-Oyono and
Guoliang Yu. This property provides a geometric obstruction to Baum-Connes conjecture.
In this paper, we mainly discuss the persistence approximation property for maximal Roe
algebras. We show that persistence approximation property of maximal Roe algebras
follows from maximal coarse Baum-Connes conjecture. In particular, let X be a discrete
metric space with bounded geometry, assume X admits a fibred coarse embedding into
Hilbert space and X is coarsely uniformly contractible, then the maximal Roe algebra of this space has persistence approximation property. We also give an application of the quantitative K-theory to the maximal coarse Baum-Connes conjecture.
报告人简介:汪镇,博士,莆田学院数学与金融学院教师。2018年毕业于华东师范大学。目前主要研究算子代数的K-理论,特别是使用量化K-理论去计算一类特殊的C*代数,或者是使用量化K-理论去研究粗Baum-Connes猜想的障碍,取得了一些成果。