报告题目:Steady Subsonic flows in High Dimensional Nozzle
报 告 人:闫伟 副研究员 北京应用物理与计算数学研究所
报告时间:2021年6月9日 14:00-15:00
报告地点:天元数学东北中心第六研讨室
校内联系人:郭斌 bguo@jlu.edu.cn
报告摘要:
In this talk, we present our result on subsonic irrotational flows in a multi-dimensional (n>1) infinitely long nozzle with variable cross sections. The flow is described by the inviscid potential equation, which is a second order quasilinear elliptic equation when the flow is subsonic. We prove the existence and the uniqueness of the global uniformly subsonic flow in a general infinitely long nozzle of arbitrary dimension. Furthermore, we show that there exists a critical value of the incoming mass flux such that a global uniformly subsonic flow exists uniquely, provided that the incoming mass flux is less than the critical value. This gives a positive answer to the problem of L. Bers.
报告人简介:
闫伟,北京应用物理与计算数学研究所副研究员,主要从事非线性偏微分方程和流体力学计算方法研究。在ARMA, CMP, JCP等发表学术论文10余篇,主持基金项目3项,曾获计算物理实验室创新奖,中物院研究生部优质课程奖。