当前位置: 首 页 - 科学研究 - 学术报告 - 正文

Sino-Russian Mathematics Center-JLU Colloquium(2022-035)- Weak Leibniz algebras and transposed Poisson algebras

发表于: 2022-10-25   点击: 

报告题目:Weak Leibniz algebras and transposed Poisson algebras

报 告 人:Askar Jumadildayev

所在单位:Kazakh-British Technical University

报告时间:2022年10月28日  14:00-15:00

报告地点:ZOOM ID:862 062 0549,Code:2022

会议链接:https://us02web.zoom.us/j/8620620549?pwd=bGhsaG15WjRza2V3ZEN4TzJYZ1FZQT09


报告摘要:Weak Leibniz algebras are defined by the following identities: $[a,b]c=2(a(bc)-b(ac))$ and $a[b,c]=2((ab)c-(ac)b).$ Any two-sided Leibniz algebra, in particular any Lie algebra is weak Leibniz. We show that polarization of any weak Leibniz algebra is transposed Poisson and conversely, depolarization of any transposed Poisson algebra is weak Leibniz. Well known that any simple Leibniz algebra is Lie. We construct simple weak Leibniz algebras that are not Lie.


报告人简介:Askar Jumadildayev is a professor of Kazakh-British Technical University. His research interests concern cohomologies and deformations of Lie algebras, N-commutators of vector fields, identities of non-associative algebras and operads theory.