报告题目:Sparse and Low-Rank Matrix Quantile Estimation With Application to Quadratic Regression
报 告 人:练恒 副教授
所在单位:香港城市大学
报告时间:2022年10月28日 星期五 10:30-11:30
报告地点:腾讯会议 ID:486350459
校内联系人:赵世舜 zhaoss@jlu.edu.cn
报告摘要:This study examines matrix quantile regression where the covariate is a matrix and the response is a scalar. Although the statistical estimation of matrix regression is an active field of research, few studies examine quantile regression with matrix covariates. We propose an estimation procedure based on convex regularizations in a high-dimensional setting. In order to reduce the dimensionality, the coefficient matrix is assumed to be low rank and/or sparse. Thus, we impose two regularizers to encourage different low-dimensional structures. We develop the asymptotic properties and an implementation based on the incremental proximal gradient algorithm. We then apply the proposed estimator to quadratic quantile regression, and demonstrate its advantages using simulations and a real-data analysis
报告人简介:练恒,现任香港城市大学数学系副教授,于2000年在中国科学技术大学获得数学和计算机学士学位,2007年在美国布朗大学获得计算机硕士,经济学硕士和应用数学博士学位。先后在新加坡南洋理工大学,澳大利亚新南威尔士大学,和香港城市大学工作。在高水平国际期刊上发表学术论文30多篇,包括《Annals of Statistics》、《Journal of the Royal Statistical Society,Series B》、《Journal of the American Statistical Association》、《Journal of Machine Learning Research》、《IEEE Transactions on Pattern Analysis and Machine Intelligence》. 研究方向包括高维数据分析,函数数据分析,机器学习等。